ConvART: Improving Adaptive Resonance Theory for Unsupervised Image Clustering


While supervised learning techniques have become increasingly adept at separating images into different classes, these techniques require large amounts of labelled data which may not always be available. We propose a novel neuro-dynamic method for unsuper- vised image clustering by combining 2 biologically-motivated mod- els: Adaptive Resonance Theory (ART) and Convolutional Neu- ral Networks (CNN). ART networks are unsupervised clustering al- gorithms that have high stability in preserving learned information while quickly learning new information. Meanwhile, a major prop- erty of CNNs is their translation and distortion invariance, which has led to their success in the domain of vision problems. By embedding convolutional layers into an ART network, the useful properties of both networks can be leveraged to identify different clusters within unlabelled image datasets and classify images into these clusters. In exploratory experiments, we demonstrate that this method greatly increases the performance of unsupervised ART networks on a benchmark image dataset.